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indices of 200 and 020 respectively to the middle of 
three intense spots which appear on the second festoon 
of zero-level b- and a-axis Weissenberg photographs. 
Constants for such a cell appear in Table 3. The fact 
tha t  the tilt of this c axis from the normal to the a b 

soaps, 18.4; fl acid soaps, 19.0; A potassium caprate, 
18-5A?. 

The authors wish to acknowledge a grant from the 
Agnes H. Anderson Research Fund of the University 

Table 3. Constants for physical unit cell, e RS0aNa. ¼H~O 

Substance a o (A.) b o (A.) c o (A.) 

G1,H2sSOaNa. ¼H20 9"90 10.76 40.63 
C14H29SOaNa. ¼H20 9.92 10.76 45-87 
CI~HaaSO 3Na. ¼H~O 9- 92 10.77 50.57 
ClsHaTSOaNa. ¼H20 9"93 10"82 56"05 

* Tilt of c axis from normal to a b plane. 
Calculation of tilt from Ad001 and A theoretical chain-length 

113 ° 14' 110 ° 29' 111 ° 6' 41 ° 46' 
113 ° 37" 110 ° 29' 110 ° 28" 41 ° 17" 
114 ° 27' 108 ° 46' 111 ° 32' 41 ° 0' 
114 ° 38' 108 ° 59' 111 ° 23' 41 ° 25' 

change: average r = 4 1  ° 27'. 

plane is the same as the tilt of the chains calculated 
from Ado01 indicates that  the chains probably lie along 
the c axis. 

Using the angle of tilt  as 41½ ° , we may calculate the 
effective cross-section of the molecules normal to the 
chain axis, ~ = ¼a 0 b 0 sin 7 cos r. Thus we obtain 18.6 A.% 
This value may be compared with those obtained for 
some other substances: a sodium 1-alkanesulfonates, 
20-21; fl sodium 1-alkanesulfonates, 18.1; 7 sodium 
1-alkanesulfonates, 23.0; 3 sodium 1-alkanesulfonates, 
22.4; C~H~=+2, 18.2; a sodium soaps, 18.2; a acid 

of Washington which made i~ possible for one of us 
(L.H.J.) to work on the later stages of the problem. 
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A s y m m e t r y  e l e m e n t  t h a t  causes equ iva len t  a t o m s  to  coincide in groups  o f  n in a p lane  (or line) 
p ro jec t ion  p roduces  a zone (or row) of  reflexions whose  average  i n t ens i t y  is n~ ,  whe re  ~ is t h e  s u m  of  
t he  squares  of  t he  sca t t e r ing  fac tors  of  the  a t o m s  in the  un i t  cell. The  ave rage  for t he  genera l  re- 
flexions is ~]; t he  difference b e t w e e n  the  zone (or row) average  a n d  the  genera l  ave rage  m a y  be useful  
in the  pu re ly  X - r a y  d e t e r m i n a t i o n  of  space groups.  The  effects of  s imple s y m m e t r y  e lements  on the  
p robab i l i t y  d i s t r ibu t ion  of  t he  intensi t ies  are  s u m m a r i z e d  in two  tables.  

1. Introduction 

The first statistical t reatment  of the intensity of X-ray 
reflexions showed tha t  the average intensity of the 
general (hkl) reflexions is given by 

N 
(/)= Z f~-Z, (1) 

i=1 

where f~ is the scattering factor of the j t h  atom and the 
sum is over all atoms in the cell (Wilson, 1942; Harker, 
1948; Hughes, 1949). More refined consideration, based 
on the central limit theorem, showed tha t  the prob- 
ability of the hkl reflexion from a non-centrosymmetric 

crystal having an intensity I is given by the acentric* 
(A) distribution function 

1P(I)= S-1 exp { - I/S}, (2) 

where S is a distribution parameter, and by the centric* 
(C) distribution function 

iP( I )  = (2~r SI)-~ exp { - I / 2 s } ,  (3) 

if the crystal is centrosymmetric (Wilson, 1949). The 
centric distribution was discovered empirically by 
Hughes (1949), and both distributions have been verified 

* These convenient adjectives were suggested by Rogers 
(1949). 
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exper imenta l ly  by  Howells, Phill ips & Rogers (1950). 
These functions are valid not only for the general 
reflexions (hkl), but  also for those corresponding to 
plane projections (say hkO) and line projections (say 
001). 

For the general reflexions from a crystal referred to 
a pr imit ive lattice the distr ibution parameter  S has 
the  value E. In  a centred crystal it  has the value 4Z 

Table 1. In tens i ty -d i s t r ibu t ion  effects o f  s y m m e t r y  
elements not causing systematic  absences 

A = aeentric distribution, C = centric distribution, S = dis- 
tribution parameter, </)= average intensity. Axes are parallel 
to c, planes perpendicular to c. 

Element Reflexions Distribution S/Z = <.l)/Z 
1 All A 1 
I All C 1 
2 hkl A 1 

hkO C 1 
OOl A 2 

-2 -- m hkl A 1 
hkO A 2 
OOl C 1 

3 hkl A 1 
hkO A 1 
OO1 A 3 
hkl C 1 
hkO C 1 
OO1 C 3 

4 hkl A 1 
hkO C 1 
OO1 A 4 
hkl A 1 
hkO C 1 
OO1 C 2 

6 hkl A 1 
hkO C 1 
OO1 A 6 

-6-- 3 /m hkl A 1 
hkO A 2 
OO1 C 3 

(face-centring) or 2Z (end- or body-centring) for the 
reflexions tha t  actual ly appear (Wilson, 1949), though 
the average in tens i ty  <I> remains equal to E. For zones 
and rows of reflexions, however, both <I> and S m a y  be 
two or more t imes as great as E. The reason for this 
has been pointed out by  Wilson (1942), and in a re- 
stricted sense by  Hughes (1949); i f  two or more atoms 
coincide in projection, they  simulate a single a tom with 
scattering factor equal to the sum of their individual  
scattering factors. As the scattering factors are squared 
in the expression for <I}, the effect is to increase its 
value. I f  the space group is such tha t  equivalent  atoms 
coincide in groups of n, the average intensi ty  becomes 

N/n 
< I ) =  Z (nf~) ~ = n Z ,  (4) 

j = l  

and, ff there are no systematic  absences in the zone or 
row corresponding to the projection, the distr ibution 
parameter  S has the same value. 

In  the present paper the effects of simple symmet ry  
elements on the in tens i ty  distr ibution in zones and rows 
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are derived. The notat ion is tha t  of Wilson (1949). Only 
the mirror plane is treated in detail;  once the general 
principle has been grasped, the effects can be wri t ten 
down without  calculation. For convenience of reference 
they  are collected in Tables 1 and 2, which include also 
results a lready published. Planes of symmet ry  are 
taken perpendicular  to c, the axes of symmet ry  parallel 
to c. Their use in space-group determinat ion will be 
discussed by  Dr D. Rogers in a later paper in this series. 

Table 2. In tens i ty -d is t r ibu t ion  effects o f  s y m m e t r y  
elements causing systematic  absences 

A = acontric distribution, C = centric distribution, Z---- syste- 
matically zero, S=distribution parameter, </)=average in- 
tensity. Axes are parallel to c, planes perpendicular to e. 

Element Reflexions Distribution <I>/Z S/Z 
21 hkl A 1 1 

hkO U 1 1 
OO1 ½Z + ½A 1 2 

31, 32 hkl A 1 1 
hkO A 1 1 
OOl ] Z + -~ A 1 3 

41, 4 a hkl A 1 1 
hkO C 1 1 
OOl ~Z + ¼A 1 4 

42 hkl A 1 1 
hlcO C 1 1 
OOl ½Z + ½A 2 4 

61, 65 hkl A 1 1 
hkO C 1 1 
OO1 ~Z + ½A 1 6 

62, 64 hkl A 1 1 
hkO C 1 1 
OOl §g + ½A 2 6 

63 hkl A 1 1 
hkO C 1 1 
OOl ½Z + ½A 3 6 

a hkl A 1 1 
hkO ½Z + ½A 1 2 
OO1 C 1 1 
OkO A 2 2 

5' All ½Z + ½A 1 2 
I All ½Z + ½A 1 2 
F All ~Z + ¼A 1 4 

2. Symmetry  elements without systematic absences 

2.1. Mirror  p lane  

In  a crystal containing a mirror plane equivalent  
atoms occur in pairs with co-ordinates (u, v, + w). The 
structure ampli tude is therefore 

½N 
F = ~ fi[exp {2ni(hu~ + kvj  + lw~)} 

j= l  
+ exp {2ni(hu~ + kv~ - / w j ) } ]  

½N 
= 2 ~] f j  COS 2n(huj  + kv~) cos 27rlwj 

i=1 
iN 

+ 2i E fJ sin 2n(huj  + kvj) cos 27rlwj, (5) 
i=1 

and the random vi~riables are 

~ =  2fi  cos 2n(hu~+ kv~) cos 2n/w~, l 
yj = 2fi sin 2n(huj  + kv~) cos 2nlw~. J (6) 
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Except for a few low-order reflexions the average value 
of each of these is zero, so tha t  the mean-square devia- 
tions are 

= 4f2 <cos + k,j)> <cos 2.1wj> 
= f y  ( t#0 ,  h and k#O), (7) 

=2f~ ( l=0  or h a n d k = 0 ) ,  (8) 
# I =  4fy <sin 2 27r(hu¢ + kv¢)> <cos ~ 2~rlw¢> 

=f~ (l#O, h and k#O), (9) 

=2/7 (l=0), (10) 
= 0  (h and k=0) .  (11) 

The parameters A and B in the distribution function 

P(x, y) dxdy = (2~rA B) -1 exp { - x~/2A ~ - y~/2B ~} dxdy 
(12) 

(Wilson, 1949, equation 19, with X =0) are given by 
½N 

A 2= • a~--½Z (/~=0, h and k#0) ,  (13) 
i=1 

= E  ( l=0  or h a n d k = 0 ) ,  (14) 
iN 

B~= 2 fl~=½Z ( l#0 ,  h and k#O), (15) 
i=1 

= E  (l=0),  (16) 

= 0  (h and k=0) .  (17) 

For the general (hkl) reflexions these give 

P(x,y)dxdy=(TrZ)-lexp{-(x2+y~)/Z}dxdy, (18) 

which reduces to the acentric distribution (2) with S = Z 
on putting x 2 + y2 = I.  For the hkO zone, however, S = 2Z, 
though the distribution function is still acentric. For 
the 001 row B = 0  and equation (12) is indeterminate, 
but  on taking the limit as B ~ 0 it  becomes the centric 
distribution (3) with S = Z. The average intensity, equal 
to A~+B ~" (Wilson, 1949, equation 20), is equal to Z 
for the hkl and 001 reflexions, but  for the hkO reflexions 
it is 2E. 

These results are exactly those tha t  would be ex- 
pected from the observations (i) that  equivalent atoms 
coincide in pairs in the projection on the mirror plane, 
(fi) tha t  the projection on a line perpendicular to the 
mirror plane is centrosymmetric. The remaining simple 
symmetry elements may therefore be treated very 
briefly, the number of equivalent atoms coinciding and 
the centrosymmetry or otherwise of a projection being 
a sufficient guide to the type and parameter of the 
distribution functions. 

2.2. Rotation axes 

When n is even, the n-fold rotation axes give a centre- 
symmetric plane projection, and hence a centric dis- 
tribution of h/c0 intensities. In the projection on to the 
axes, equivalent atoms coincide in groups of n, so that  
S and {I} are equal to nE for the 00I reflexions. 

2.3. Inversion axes 
The twofold inversion axis is the same as a mirror 

plane. The threefold axis implies a centre of symmetry,  

so tha t  all intensity distributions are centric. In  the 
projection on to the axis equivalent atoms coincide in 
groups of three, making S and ( /> equal to 3E. The 
fourfold axis gives a centrosymmetric plane proj ection; 
in the projection on to the axis pairs of atoms coincide, 
giving S and ( I )  equal to 2Z. The sixfold axis is equi- 
valent to a threefold rotation axis with a perpendicular 
mirror plane, thus giving S = < I ) = 2 E  for the hk0 
reflexions and a centrosymmetric line projection with 

" S - - ( I ) = 3 E .  (The progression of ( / > = E ,  2E, 3X, for 
the hkl, hld) and 001 reflexions is rather interesting, and 
it  is unfortunate tha t  there is no certain example of the 
class 6 to investigate.) 

3. Symmetry elements involving systematic absences 
3"1. Distinction between ( I )  and S 

The chief peculiarity introduced by symmetry 
elements involving absences is tha t  the average inten- 
sity is no longer necessarily equal to the distribution 
parameter. This has already been discussed for centring 
(Wilson, 1949), and can be avoided formally by  refer- 
ring the reflexions to the primitive cell or, for projec- 
tions on to glide planes or screw axes, the apparent 
primitive cell. Expressed otherwise, the average in- 
tensi ty of the reflexions tha t  appear is equal to the 
distribution parameter for the reflexions tha t  appear, 
but the average of all reflexions is reduced by those of 
zero intensity. 

3.2. Screw axes 

When n is even, the n m screw axes give a centre- 
symmetric plane projection, and hence a centric dis- 
tribution of hk0 intensities. When n and m have a 
common factor p, equivalent atoms coincide in groups 
of p in the projection on to the axis, thus raising ( I )  
to pE. The m/n or (n -m) /n  systematic absences further 
increase S to hE. 

3"3. Glide planes 
An a glide makes haft the intensities zero in the hkO 

projection, so that  for these reflexions S is 2Z, and gives 
a centrosymmetric projection on to c, so that  the 001 
reflexions have a centric distribution. In the projection 
on to b, equivalent atoms coincide in pairs, so tha t  the 
0k0 reflexions have </> and S equal to 2E. 

Irreducible d glides occur only in connexion with 
other symmetry elements, and may perhaps best be 
considered with the determination of space groups. 

4. Discussion 
The numerical differences in ( /> described here are 
considerably greater than those in the ratio p -  <.F)2/(I> 
(Wilson, 1949), or in the integral distribution functions 
1N(z) and ~N(z) (Howells et al. 1950). They should be 
particularly useful when discrimination between space 
groups depends on a row of reflexions only, so tha t  the 
number of reflexions is too small for a satisfactory 
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determination of the integral distribution function. 
Further, the differences in ( I )  depend on less subtle 
principles than do the differences between the dis- 
tribution functions, and are less likely to be upset by 
deviations from the ideal of a random distribution of 
a large number of atoms of approximately the same 
scattering factor. Heavy atoms in general positions 
should not be troublesome, though those in special 
positions may cause anomalies. 

The writer's thanks are due to Dr D. Rogers, whose 
unpublished work on Patterson syntheses showed 
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qualitatively that  effects of the type discussed here must 
exist and should be sought. 
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The crystal structure of MoaSi has been determined from powder-diffraction patterns. The lattice 
is cubic with a -  4.890 + 0.002A. The structure is that of ~6.wolfram and the compound is isostructural 
with CraSi and VsSi. 

An investigation of the phase diagram of the molyb- 
denum-silicon system has been made in this laboratory 
by Searcy (1949) and L. Brewer, who heated known 
mixtures of the elements and submitted them to us for 
X-ray examination. A new phase was found whose com- 
position corresponded to MoSi0.as+0.05. Powder-diffrac- 
tion patterns of this phase were obtained using copper 
Ka X-rays with a 9 em. diameter powder camera and 
with a 'Norelco' spectrometer. The density of a small 
sample was determined by measurement of its apparent 
weights in air and in toluene. From these data it was 
possible to deduce the complete structure by a straight- 
forward procedure depending only on the reflections of 
zero intensity. The result was checked by computation 
of the intensities of the observed lines. 

The diffraction patterns corresponded to a primitive 
cubic lattice with 

a = 4.890 ± 0.002 A. 

The density measured by buoyancy was 8.4 ± 0.3 g. cm.-a, 
where the uncertainty is due to the weighing error of 
the small sample used. This value corresponds to a 
molecular weight of 592. The composition MoSi0.as~0.05 
deduced from the phase studies corresponds to 91 ± 1% 
molybdenum. Thus there are 5-6_+ 0.3, i.e. 6 molyb- 
denum atoms, and 2.1 _+ 0.3, or 2 silicon atoms in each 
unit cell. For Mo6Si~ the density calculated from the 
X-ray measurement is 8-97 ± 0.01 g.cm. -3. The differ- 
ence from the measured value is not regarded as signi- 
ficant, because of the porous appearance of the sample 
tested by buoyancy. 

Reflections were observed for planes hhl only ff 
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l=2n. Also absent were 410, 430 and 531. All other 
lines up to hg+ kg+ l~= 38 were observed. These extinc- 
tions limit the space group to Oa-Pm3n and T~-P43n, 
which have sets of 2, 6, 8, 12 and more equivalent 
positions. The twofold and sixfold special positions for 
these two space groups are identical, so it is sufficient 
to consider 0~. The two silicon atoms must be in 2 (a)" 
0,0,0; ½,½,½. Molybdenum in 6(b): 0,½,½; ½,0,½; 
½, ½, 0; 0, 0, ½; 0, ½, 0; ½, 0, 0 does not permit the observed 
reflections 210, 320, 421, and others. The two remaining 
sets 6 (c) and 6 (d) differ by the translation ½, ½, ½, and 
therefore give equivalent structures when combined 
with 2 (a). Such a combination moreover requires all 
the observed extinctions. Therefore, the structure is: 

Space group O~-Pm3n. 
2Si in (a): 0,0,0; ½, ½, ½. 
6Mo in (c): [,0,½; ½, ~:,0; 0, ½,¼; ~,0,½; ½,~,0; 0, ½, ¼. 

Intensities were calculated for this structure by 
the equation 

I =P I/Vhkz ]9. 1 + COS 9" 20 
sin ~ 0 cos 0 × 3"3 x 10 -5, 

where Fh, , is the structure factor, p is the multiplicity, 
and 0 is the Bragg angle. The numerical factor reduces 
the intensities to the arbitrary scale of the spectro- 
meter values. The agreement of these intensities with 
the observed values listed in Table 1 confirms the 
structure deduced above. Reflections required to be 
absent by the symmetry are omitted from the table. 
The slightly low values observed for the first few lines 
are probably the result of absorption in the sample. 

x7 


